The practical utility of incorporating model selection uncertainty into prognostic models for survival data
نویسندگان
چکیده
Predictions of disease outcome in prognostic factor models are usually based on one selected model. However, often several models fit the data equally well, but these models might differ substantially in terms of included explanatory variables and might lead to different predictions for individual patients. For survival data we discuss two approaches for accounting for model selection uncertainty in two data examples with the main emphasis on variable selection in a proportional hazard Cox model. The main aim of our investigation is to establish in which ways either of the two approaches are useful in such prognostic models. The first approach is Bayesian model averaging (BMA) adapted for the proportional hazard model (Volinsky et al., 1997). As a new approach we propose a method which averages over a set of possible models using weights estimated from bootstrap resampling as proposed by Buckland et al. (1997), but in addition we perform an initial screening of variables based on the inclusion frequency of each variable to reduce the set of variables and corresponding models. The main objective of prognostic models is prediction, but the interpretation of single effects is also important and models should be general enough to ensure transportability to other clinical centres. In the data examples we compare predictions of the two approaches with “conventional” predictions from one selected model and with predictions from the full model. Confidence intervals are compared in one example. Comparisons are based on the partial predictive score and the Brier score. We conclude that the two model averaging methods yield similar results and are especially useful when there is a high number of potential prognostic factors, most likely some of them without influence in a multivariable context. The new method based on bootstrap resampling has the additional positive effects of achieving model parsimony by reducing the number of explanatory variables and dealing with correlated variables in an automatic fashion. keywords model selection uncertainty; survival analysis; model averaging; bootstrap; prognostic factor models.
منابع مشابه
Fuzzy Random Utility Choice Models: The Case of Telecommuting Suitability
Random utility models have been widely used in many diverse fields. Considering utility as a random variable opened many new analytical doors to researchers in explaining behavioral phenomena. Introducing and incorporating the random error term into the utility function had several reasons, including accounting for unobserved variables. This paper incorporates fuzziness into random utility mode...
متن کاملOn Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملDetermining the Prognostic Factors of Survival in Patients with Head and Neck Cancer Using Parametric Models and Cox Bayesian Model, from 2007 to 2013
Introduction: Head and neck cancer is one of the most important cancers with low survival. This study was designed to evaluate the one-year survival of patients with head and neck cancer and related demographic factors. Methods: The present study was a cross-sectional study that reviewed the records of the patients with head and neck cancer (193 patients) in 2007-2013. In this study, Kaplan-Me...
متن کاملEvaluation of prognostic factors affecting long and short term survival rates of Hodgkin's lymphoma patients using the cure fraction models
Background and Aim: This study aimed to analyze the factors affecting time and experience of relapse in the patients with Hodgkin's lymphoma, using cure fraction. Material and Methods: This retrospective study included all the patients diagnosed as Hodgkin's lymphoma in the Center for oncology and hematology in Shafa Hospital in Ahwaz City from 2002 to 2012. We used survival analysis and cure f...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004